
JJEE Volume 6, Number 1, 2020
Pages 63-77

Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619

* Corresponding author Article’s DOI: 10.5455/jjee.204-1581015531

Secure IoT Resources with Access Control over RESTful

Web Services

Khalid Aloufi1*, Omar Alhazmi2
1, 2 College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia

E-mail: koufi@taibahu.edu.sa

Received: November 27, 2019 Revised: December 19, 2019 Accepted: December 28, 2019

Abstract— With the Internet of Things (IoT), the number of connected devices on the internet has increased to
billions, and this number is expected to grow exponentially in the coming years. Services and applications based
on the IoT are expected to expand to cover more areas in the near future. Performance, connectivity and security
are very important aspects of such an expansive environment. In order to enhance the performance and security
of the IoT, a secure and cost-effective model for IoT applications that is based on Message Queue Telemetry
Transport (MQTT) is proposed. This model addresses the IoT security challenges primarily by moving access
control and data management from the MQTT broker to a fog server. The performance of the proposed model is
validated by multiple metrics; and the obtained results show that it can be deployed successfully in the
implementation of IoT applications to enhance both the IoT’s security and performance.

Keywords— Internet of Things; Message Queue Telemetry Transport; Access control; Security; Web service; Fog

server

1. INTRODUCTION

Internet of Things (IoT) is essential for future internet integration into different services

in smart homes or smart cities. With the advent of IoT, various new internet services became

available. However, one of the main challenges of IoT services is security [1], for example,

means of protecting home or personal data [2]. Therefore, access control is required for these

data, and users and systems should have regulated data storage, processing and accessibility.

Another challenge for IoT applications is that IoT devices are constrained, not high-end

devices; therefore, application development should implement this security requirement

over non high end devices. Using typical methods of controlling access to IoT devices will

increase the overhead of traffic, and solutions will be required to adapt to the IoT

requirements, such as the energy of processing power. When using the web; representational

state transfer (REST) is one of the requirements for effective transactions. However, it is not

suitable for the IoT because of the high overhead as a result of using web technologies.

Therefore, for large IoT projects, there should be a middle layer between the IoT and the web.

Currently, IoT exchanges data with application protocols such as message queue

telemetry transport (MQTT) using REST over the hypertext transfer protocol (HTTP) in its

services [3, 4]. Crus et al. recommend the use of MQTT with user-managed access control

(UMA) for IoT applications [5]. In MQTT, the connection with the broker can be secured with

the CONNECT message. MQTT is a publish/subscribe application protocol in its simplest

form. As mentioned, it can be secured with the CONNECT message. The basic sequence

diagram in Fig. 1 shows the functionality of MQTT.

mailto:koufi@taibahu.edu.sa

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 64

MQTTCp (Publishers) Cs (Subscribers)

Connect

ConnectionACK

Publish (Topic, value)

Subscribe (topic)

Connect

ConnectionACK

Fig. 1. The publish and subscribe transactions of MQTT.

Different methodologies are used to enhance the security of MQTT; such as proper use

of the CONNECT message or the model developed by Crus et al., which used a security

layer over MQTT using UMA. This work is based on the mechanism of MQTT since it is the

most popular IoT application protocol, as shown in Fig. 2 [6].

Fig. 2. The popularity of messaging protocols [6].

MQTT works over transmission control protocol/internet protocol (TCP/IP) and is an

application protocol for the IoT, as shown in Fig. 3 [7]. MQTT is considered as a lightweight

IoT protocol for smart city applications [8]. Smart city applications are expected to have great

size of data sharing and MQTT is coping with such requirement by having low data

overhead which is more adapted towards constrained devices and networks. Table 1 shows

the IoT stack model using MQTT as the application server.

65 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

Fig. 3. The MQTT broker publishing and subscribing clients [7].

Table 1. IoT stack model.

Layer OSI layers TCP/IP IoT (MQTT)

7 Application

Application MQTT 6 Presentation

5 Session

4 Transport Transport TCP

3 Network Internet IP

2 Data link
Network access

IEEE 802.15.4 MAC

1 Physical IEEE 802.15.4 PYS

This work presents a model to address IoT security challenges primarily by moving

access control and data management from the MQTT broker to a fog server. To achieve this

goal; a new model of the IoT is presented. The proposed model uses web technologies to

authenticate users to access IoT resources by adding a fog server layer with RESTful web

services, saving the IoT power and bandwidth and increasing the security level. Web

security, which is mature enough to be trusted in current internet best practices, is adapted in

the IoT design model to enhance security. Using web technologies will allow the connection

of different devices from different vendors. In addition, database server is used in the fog

server for data management of publish/subscribe messages. This model is validated by

multiple metrics such as: the security level; the extra overhead of the performance added to

the model; and the energy consumption level which became lower because the system has

moved the overhead from the IoT model to the fog server, as will be shown later.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 66

The main objectives of this work are:

 Designing and implementing IoT application based on MQTT application protocol

 Moving the authentication of users, subject management, including subscribing and

publishing, from the MQTT broker to the fog server

 Increasing the functionality of the IoT system to serve more subscribers and publishers

by moving the subscribing and publishing mechanism from the MQTT broker to the

fog server which has more features compared to the MQTT broker.

2. RELATED WORK

 Yokotani and Sasaki [9, 10] discussed the high overhead of using the HTTP and the

performance advantage of MQTT and proposed compression to enhance MQTT for some

topic lengths. Naik discussed four of the IoT systems protocols; MQTT, constrained

application protocol (CoAP), advanced message queuing protocol (AMQP) and HTTP and

presented a detailed analysis of the main characteristics of each protocol in terms of

reliability, security and performance [11]. Sueda, Sato and Hasuike evaluated Web Socket,

HTTP, and MQTT in terms of quality of service [12]. Alhazmi and Aloufi identified the main

advantages of implementing the IoT for the fog-cloud rather than the cloud only; moreover,

they previewed CoAP and MQTT protocols [13]. Aloufi presented the constrained

devicesand network features and their requirements for effective design and implementation

and recommended moving some functions from IoT devices, which are constrained, to an

edge server and showed how the IoT could work in different network typologies [14]. Luis

Cruz-Piris et al. presented an access control mechanism for IoT devices running over MQTT

using UMA for managing the services of the IoT resources, controlled with communication

procedures and presented a model based on the resources of the communication protocols

[5]. They indicated that there are different access control mechanisms relevant for the IoT,

such as UMA that is integrated with the web access mechanism. The discussed IoT models

focused, in general, on lightweight and simple design models as their primary ground,

which slows the development of other important required features, such as security [5].

IoT has different messaging application protocols, such as MQTT, CoAP and many

more. One of the known messaging protocols is HTTP, which is used to manipulate and

present the structure of web pages [15]. HTTP is widely used protocol. However, as

mentioned earlier, it has high overhead for tiny devices; therefore, other protocols were

developed, such as MQTT and CoAP.

MQTT, on the other hand, is developed specifically for IoT devices, for small sized

overhead messages and processing requirements. MQTT has two implementations: one as a

broker and the other as either a publisher or a subscriber as depicted in Fig. 3.

In contrast to MQTT, CoAP is an IoT protocol that is deigned to have enhanced

features that are not available in MQTT [16]. While MQTT works over TCP, CoAP works

over user datagram protocol (UDP), which decreases the transactions overhead. CoAP

overcomes the reliability issues by integrating reliability small transaction at the application

layer. Furthermore, CoAP has enhanced functionality, such as discovery and observation of

resources using a pull push mechanism of messages.

CoAP is designed to work over communication standards, such as IEEE 802.15.4, that

has a transmission rate of 250 kbps and the maximum message size is 127 B. An adaptation

67 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

layer is added to CoAP in case it is used over IPv6 in low-power wireless personal area

networks (6LoWPAN) to support IPv6 [14].

Extensible Messaging and Presence Protocol (XMPP) is based on extensible markup

language (XML) and widely known in different applications including IoT application based

in the publish/subscribe mechanism [17]. However, the simplicity of using MQTT -

compared to MQTT – for IoT application stems from the fact that XMPP is designed for

publish/subscribe web applications; while MQTT is designed for publish/subscribe IoT

applications.

AMQP is suitable for IoT applications; however, it has more overhead for the

constrained IoT devices making MQTT a clear suitable solution [18]. Using data-local

reconstruction layer (DLRL) and data-centric public-subscribe (DCPS) layer, data

distribution service (DDS) transmits information between publishers and subscribers directly

without a broker [19]. While earlier messaging protocols are application layer protocols, DDS

is a session layer protocol. Also, DDS is decentralised service, where subscribers are

subscribing to the publisher without a broker in the middle as in MQTT. Despite the number

of features of using DDS, because of the the setup and configuration of the system, compared

to other protocols, DDS is used by specific kind of Machine to Machine (M2M) applications.

MQTT has a fixed header of only 2B for the different commands, such as the

CONNECT command which is used to establish connection from the MQTT client to the

MQTT broker; which replays by the CONNACK. There are other commands as well, such as

PUBLISH, which is used by The MQTT client to publish a subject. The client requests

subscription using the command SUBSCRIBE; and the broker confirms subscription by the

command SUBACK. Also, the client unsubscribes using the command UNSUBSCRIBE; and

the broker replays with the command UNSUBACK. The client can cancel the connection

using the command DISCONNECT.

3. SYSTEM MODEL

Each publishing client (CP) has S1 to Sn sensors as resources. The user can access the

resources through the access control (AC) mechanism developed for this system. The AC

will use the available protocols and web technologies to simplify the system’s

implementation and design. The sequence diagram for a simple system design is shown in

Fig. 4, which also shows the system design model. The user utilizes one of the subscribed

clients to access the resources through the system. The MQTT client subscriber (CS) contacts

the fog server, which in turn authenticate the request using the AC mechanism shown later.

The request is granted access, and then; the MQTT broker receives the request and obtains

the MQTT client publisher (CP) data as resources. One of the authentication methods for

resources is AC for web pages using the HTTP protocol. Following the client-server model,

the request is received by the web server that responds appropriately.

In Fig. 4, the fog server’s main job is to authenticate and authorize the user if it has the

right privileges of using the web server. It also manages subscribe and publish of topics

using a database server. The access to the system in MQTT is secured using secure session

access. The direction of the publish messages is from left to right where the publishers (CP)

send messages to the MQTT broker, which in its turn moves the messages to the fog server.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 68

The latter updates the database for the subject and its value. When there is a subscriber to a

subject the fog server transmits the new messages to its subscribers. On other hand, the

subscribers (CS) send subscribe messages to the fog server to subscribe to a specific subject.

InternetMQTT
Fog

Server
(AC)

User

Cp Cs

Cs

Cs

Cp

Cp

Fig. 4. System model.

The system in Fig. 5 shows a typical MQTT system without a fog server. Subscribers

contact the MQTT broker directly over the cloud. This increases vulnerability to attack and

increases the load above the limited abilities of the broker. Therefore, a fog server is required

between the broker and the subscriber connections as shown in Fig. 6. The fog server in the

model contains a web server and a database server; it acts as a subscriber for all the resources

connected to the MQTT broker. The fog server is recommended as a middle-ware service

between the IoT devices and cloud services, and it is accessed by users over the internet [7].

Fig. 5. Typical MQTT.

Fig. 6. MQTT with a fog-based database layer.

69 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

The other main part of the model is the MQTT broker, which can be considered as

dynamic rather than a static implementation because the complexity of subscribers has

moved to the fog server. The MQTT broker only passes published messages from CP to the

fog server. When the CS connects to the fog server, the MQTT broker dynamic

implementation has one code for each functionality for any IoT connected device. In regular

implementations, the MQTT broker is static because each functionality requires specific code,

which increases the complexity of the MQTT system implementation. MQTT broker is

considered static when a code is required for every connected CP or CS. The main goal is to

have the MQTT broker ready for plug and play. Dynamic services in IoT devices are very

important for simple plug-and-play implementations, such as the Wi-Fi-manager network,

although the Wi-Fi connection still requires a more high-performance simple connection

[20-22].

In this model, there are many subjects from different publishers and one subscriber,

which is the fog server. Therefore; the fog server is in the middle layer between the MQTT

broker and its subscribers. The subscribers are connected to the fog server rather than

connected to the MQTT broker directly. The fog server has a web server and a database of

the subjects and their values. In this model, the MQTT system is connected to the internet

through the fog server to help using web technologies on IoT devices.

An IoT device connects with the MQTT broker using a stateless connection [23] while

having a stateful connection between the MQTT broker and the edge server. In a stateful

connection between the edge server and the web users, either via a web browser or mobile

applications, multiple sessions are considered the same. The cloud is used by users to access

IoT resources after authentication and authorization with input-checking for enhanced

security. The model between the user and the fog server follows the client-server model

(C/S). The user is notified when any of the CS gets any published data of any subject, to

which it is subscribed. The MQTT broker is a publisher-subscriber application protocol with

enhanced access control of resources managed by the fog server as a web agent. The

resources - which are the publishers of sensor data - send information to the MQTT broker

for each period, and their characteristics will depend on how the manufacturer has designed

the device. The database contains the user credentials and the topic details as well as a list of

the users (subscribers) and the devices (publishers).

The fog server works as an extension of the MQTT broker. Any actuator, such as a fan

or LED light bulb, is a subscriber that is connected to one of two entities: the fog server or the

MQTT broker. If it is connected to the MQTT broker directly, the broker rule - that has only

one subscriber - is broken, and a customized and static configuration is required for the

actuator. Therefore; the actuators are connected to the fog server directly as users and

connected to the MQTT broker dynamically in accordance with the rule.

For the above reasons, the system is designed with two main functionalities: AC and

data management in the fog server (see Fig. 4). The AC unit controls the CS authentication

and authorization using RESTful. The fog server takes the subscribe data management part

from the MQTT broker. When the CP publishes new data, the MQTT broker sends the new

data to the fog server. Physically, the fog server is the only registered subscriber in the

MQTT broker with all subscribers. Virtually, subscribers are connected to publishers through

the MQTT broker over the fog server that saves the new data in the database server and

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 70

forwards it to the CS. The fog server contains the database server to save the state of every

publisher for any expected required processing, such as when a user requests the last ten

messages from a specific publisher for a specific subject.

The fog server has a high-speed bandwidth connection with the internet to connect to

the cloud. Additionally, it has a web server and database server for the subscriber and

publisher. The MQTT in the model have a limited number of connections with the

subscribers and the fog server. The fog server maintains a simple dynamic connection with

different devices and users. When the CP s publishes data to the MQTT broker, the MQTT

broker sends the message one time to the fog server. The fog server then sends the message

to several CS. Therefore, for any published message, the IoT device sends the message one

time to the MQTT broker, which also sends the message one time to the fog server.

Therefore, the number of messages sent from the MQTT broker is kept minimal; one

messages for any new subject value from the IoT devices. The fog server is a high end

machine with high bandwidth connection, while the MQTT broker has limited energy and

connection bandwidth. IoT devices have a limited bandwidth and a limited power, and

therefore, any message transmission costs the IoT device some energy. Also, the security

layer adds an extra overhead to messages. Therefore, keeping the messages’ sizes - between

the IoT device and the MQTT broker - to minimal saves the energy of the IoT devices and the

MQTT broker. Similarly, the security layer in the fog server adds some overhead for

messages; so, by moving the CS management to the fog server, the bandwidth of the MQTT

broker is saved and messages are kept for minimal size. The model using the fog server

enhances the security between the MQTT broker and the world. The security between the

IoT device and the MQTT broker and between the MQTT broker and the fog server is

maintained by the embedded security in the MQTT.

Fig. 7 represents the sequence diagram for the subscription of users to a topic

published by one of the devices connected to the system and shows the steps needed for the

subscribed user to read a topic. It reveals that neither the publishers nor the MQTT broker

has an action in this process. The fog server contains the web server, which controls the

subscriptions of subscribers to the topics published by the IoT devices.

MQTTCp (Publishers) Cs (Subscribers)

Subscribe (topic)

Read (topic)

Database Server Webserver

AccessGranted()

Login()

Trans()

Publish (topic, value)

Trans()

Trans()

Fig. 7. Transactions in subscribing/reading.

71 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

The fog server – as shown in Fig. 7 - represents the front end of the MQTT network of

devices and manages AC. The subscribers are logging in the system and, then, subscribe to a

topic. The subscription information is saved in the database. The subscriber can read a topic

anytime using the read command. The subscribers will need authentication when reading a

topic data from the fog server. They get a publish message as a response to the read

command. The read function is an added feature which is not available in the regular MQTT

implementation.

In Fig. 8, the publishing steps are shown as a sequence diagram as well. The publishers

will send the topics to the broker, which in its turn forwards it to the fog server that is

considered the only subscriber of the broker. The fog server is a subscriber with the MQTT

broker. Other subscribers are considered as subscribers with the fog server. The fog server is

taking this task with the MQTT broker. However, since the fog server has more than one

subscriber, a transaction is invoked and a database record is created, and the topic details are

published and sent by the fog server to all subscribers. The fog server is a central control unit

for the topics that works with the broker to extend the range of subscribers and applications.

Therefore, the broker is required to access the fog server to publish topics to the subscribers

through the fog server.

As shown in Fig. 8, when CP has a topic and value to publish, the IoT device connects

to the MQTT broker; then, it sends the publish command with the subject and the value. The

publish messages is sent from the CP to the MQTT broker. The MQTT broker does login to

the fog server and, then, sends the publish message to the fog server. After that, a publish

message is sent again from the fog server using the web server to all CS. Then, at the same

time, the web server sends the message to the Cs and to the database server to store the state

of the subject. The subject in the database can be requested by any Cs later as depicted in

Fig. 7.

MQTTCp (Publishers) Cs (Subscribers)

Publish (Topic, value)

Connect

ConnectionACK

Database Server Webserver

AccessGranted()

Login()

Trans()

Publish (Topic, value)

Publish (Topic, value)

Fig. 8. Transactions in publishing.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 72

4. RESULTS AND DISCUSSION

The proposed IoT model, shown on Fig. 4, contains one web server, one database

server, one MQTT broker and a set of IoT devices with a Poisson arrival process with arrival

rate λ and an interarrival time of 1 s. The service rate is fixed at each node. The web server

and the database server compose the fog server that has a high speed connection with the

cloud as well as the subscribers.

The simulation is run using Java in a system with 64 bit Windows 10, running on an

Intel® Core™ i7-4770 processor with 16 GB of RAM. Configuration of the simulation model

is as follows: the wireless connection between the fog server and the MQTT is 100 Mbps. The

Wi-Fi connection between the MQTT broker and the IoT devices is 10 Mbps over the 802.11g

protocol. However, the sending rate of each IoT device is much lower, allowing the broker to

receive data from many IoT devices. Each IoT device is equipped with ZigBee, using an IEEE

802.15.4 antenna, with a rate of 250 kbps, and the maximum message size of 127 B according

to the ZigBee specification [24]. The time required to access the database - tested with the

PostgreSQL access time, obtained from the Java driver - is 130 ms. The time required to

query the database is approximately 100 ms. The processing time at the broker, web server,

cloud and subscriber are 100 ms each. The processing time at the IoT devices is 10 ms. The

transmission time between the fog server and the broker, obtained by a ping to the MQTT

broker at test.mosquitto.org and tested by Jaloudi [8], is 120 ms. The simulation model can

process a maximum of two jobs at a time considering the different sub-processes of the main

processes, which are the subscribing and the publishing process.

Eq. (1) shows the complete processing time for one publishing transaction while Eq. (3)

shows the average transaction time for one subscribing transaction. Eq. (2) shows that the

processing time at the fog server is the sum of the processing times at the web server and the

database server. The processing time at the IoT device is defined as TPA. The transmission

time between the IoT device and the MQTT broker is TXAB. The processing time at the MQTT

broker is defined as TPB. The transmission time between the MQTT broker and the fog server

is 3*TXBS, where S represents the fog server that contains the web server, C, and the database

server, DB. Fig. 8 shows that there are three transactions involved in the publication between

the MQTT broker and the fog server. Processing time at the webserver is defined as TPC.

Processing time at the database server is defined as TPD. The transmission time between the

fog server and the subscriber is TXSE. Processing time at the subscriber is defined as TPE.

Eq. (2) shows the total processing time at the fog server as a sum of the processing time

required by the web server and by the database server.

 TAE = TPA+3∗TXAB+TPB+3∗TXBC+TPC+TPD+TXCE+TPE (1)

 TPC = TPS + TPDB (2)

 TAE = TPC + TPD+5 ∗ TXCE+ TPE (3)

From the simulation experiments, the arrival rate of data from each of the IoT devices

is 127 B/s, which is one reading of subject data, keeping the data size minimal and avoiding

fragmentation. Figs. 9 and 10 show that the number of jobs in the system increases over time,

and that a congestion-control or compression mechanism is essential to keep the number of

73 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

jobs steady or stable, and such a mechanism consequently decreases the system’s waiting

time.

Fig. 9. Subscribing: queue size vs service time for different arrival rates.

Fig. 10. Publishing: queue size vs service time for different arrival rates.

The simulation results show that publishing one message from the fog server to the

subscriber, TCE, takes approximately 0.6 s to 0.8 s (see Fig. 11) and that publishing one

message from the publisher to the fog server, TAC, takes from 0.755 s to .941 s (see Fig. 12.)

Figs. 11 and 12 also show the extra system time required for implementing the model.

Subscribing requires approximately 0.1 s or 22% more time for subscribing while publishing

requires 0.55 s more or 300% more publishing time. The proposed model constitutes

proposed a data management model that increases the system’s security, the processing

requirements and the response time. However, the proposed model increases the capabilities

of an IoT application since it has the ability to respond to greater number of Cs. In the

proposed model, the subscribers Cs are connected to the fog serve rather than to the MQTT

directly. Because the fog server has more processing capabilities and bandwidth, the fog

server can server more subscribers Cs more efficiently and securely. In fact, more than one

0

50

100

150

200

0 2000 4000 6000 8000 10000

Q
u

eu
e

Si
ze

Service Time [ms]

λ=1 λ=10 λ=20

0

50

100

150

200

0 2000 4000 6000 8000 10000

Q
u

eu
e

Si
ze

Service Time [ms]

λ=1 λ=10 λ=20

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 74

MQTT broker can be connected to the fog server. Therefore, the fog server can serve more CP

than a single MQTT broker.

Fig. 11. Subscribing: average waiting time of the system.

Fig. 12: Publishing: average waiting time of the system.

Results of comparing the proposed model with the regular model that has AC and data

management are shown in Figs. 13 and 14. The fog server is 21 times faster according to the

benchmark in [24] if it is equipped with a processer of Intel-core-i7-6700k and the MQTT

broker, using Raspberry Pi, with process has cortex-A53 ARM-v8. Therefore, when

implementing the model over the MQTT broker, publishing the model takes much more

time (about 1782 ms or 300% more) as shown in Fig. 13. While for the subscribing,

implementing the model over regular MQTT broker, the subscribing transaction requires

about 1325 ms or 175% more time as revealed by Fig. 14. As a result, the regular model will

consume more energy because of the added functionality. Therefore, to implement such a

model, the layer, added in the model, is essential and will require a middle layer with high

400

450

500

550

600

650

700

750

800

0 5 10 15 20

A
ve

ra
ge

 W
ai

ti
n

g
T

im
e

 [
m

s]

Arrival Rate

NoAuth Auth

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

[m
s]

Arrival Rate

Auth NoAuth

75 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

processing power, such as the fog server in the model. The proposed model is outperforming

the regular model when implementing AC and data management.

Fig. 13: Publishing: including the authentication with regular MQTT for the system’s average waiting time.

Fig. 14. Subscribing: including the authentication with regular MQTT for the system’s average waiting time.

5. CONCLUSIONS

In this work, an IoT model with enhanced security - achieved by moving the

processing complexity from the MQTT broker to the fog server - was proposed. The model

presented an added layer of access control to increase the security of an IoT system. But this

layer invoked an overhead of additional processing time. However, this time can be

managed and optimized to a required quality of service with different configurations of the

system. While increasing the system’s performance, for instance by decreasing waiting time,

there is generally a requirement for congestion control, network management or data

compression for the IoT connected devices. The performance of proposed model was

0

500

1000

1500

2000

2500

0 5 10 15 20

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

[m
s]

Arrival Rate

Auth NoAuth RegAuth

400

900

1400

1900

2400

2900

0 5 10 15 20

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

[m
s]

Arrival Rate

NoAuth Auth RegAuth

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1 76

authenticated by multiple metrics; and the obtained results show that it can be deployed

successfully in the implementation of IoT applications to enhance both the IoT’s security and

performance.

The proposed - in this work - model can be also extended by having more MQTT

brokers connected to the fog server. Also, for load balancing, more fog servers can be added

as a subscriber to the MQTT broker, which increases the system reliability.

In future work, it will be possible to control the amount of additional time overhead. In

fact, future development and design of security systems should consider keeping the data

stream in the real-time range. With such enhancement, the future systems can behave in real

time with enhanced security and service of IoT applications without compromise.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of things (IoT): a vision, architectural

elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7,

pp. 1645 – 1660, 2013.

[2] S. Vashi, J. Ram, J. Modi, S. Verma, C. Prakash, “Internet of things (IoT): a vision, architectural

elements, and security issues,” Proceedings of IEEE International Conference on IoT in Social, Mobile,

Analytics and Cloud, Palladam, pp. 492-496, 2017.

[3] A. Banks, R. Gupta, MQTT Version 3.1.1 Protocol Specification, Oasis Standard, Oasis, Burlington,

USA, 2014.

[4] L. Cruz-Piris, D. Rivera, G. Lopez-Civera, E. Da Ia Hoz, I. Marsa-Maestre, J. Velasco, “Protecting

sensors in an IoT environment by modelling communications as resources,” Proceedings of the 5th

International Symposium on Sensor Science, Barcelona, Spain, 2017.

[5] L. Cruz-Piris, D. Rivera, I. Marsa-Maestre, E. De la Hoz, J. Velasco, “Access control mechanism

for IoT environments based on modelling communication procedures as resources,” Sensors,

vol. 18, no. 3, pp. 1-21, 2018.

[6] Eclipse IoT Working Group, IEEE IoT, AGILE IoT, IoT Council, “IoT developer survey 2017,”

Eclipse Foundation, 2017. <https://www.eclipse.org/lists/iot-wg/pdf05OUMA7E1X.pdf>

[7] L. Brenman, “API builder and MQTT for IoT,” Axway, 2018.

<https://dzevblog.axway.com/apis/api-builder-and-mqtt-for-iot-part- 1/>

[8] S. Jaloudi, “MQTT for IoT-based applications in smart cities,” Palestinian Journal of Technology and

Applied Sciences, vol. 2, pp. 1–13, 2019.

[9] T. Yokotani, Y. Sasaki, “Comparison with HTTP and MQTT on required network resources for

IoT,” Proceedings of IEEE International Conference on Control, Electronics, Renewable Energy and

Communications, Bandung, pp. 1-6, 2016.

[10] T. Yokotani, Y. Sasaki, “Transfer protocols of tiny data blocks in IoT and their performance

evaluation,” Proceedings of IEEE 2016 3rd World Forum on Internet of Things, Reston, VA, pp. 54-57,

2016.

[11] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and

HTTP,” Proceedings of IEEE International Systems Engineering Symposium, Vienna, pp. 1-7, 2017.

[12] Y. Sueda, M. Sato, K. Hasuike, “Evaluation of message protocols for IoT,” Proceedings of IEEE

International Conference on Big Data, Cloud Computing, Data Science and Engineering, Honolulu, HI,

USA, pp. 172-175, 2019.

[13] O. Alhazmi, K. Aloufi, “Fog-based internet of things: a security scheme,” Proceedings of IEEE 2nd

International Conference on Computer Applications & Information Security, Riyadh, Saudi Arabia,

pp. 1-6, 2019.

https://www.eclipse.org/lists/iot-wg/pdf05OUMA7E1X.pdf
https://dzevblog.axway.com/apis/api-builder-and-mqtt-for-iot-part-%201/

77 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 1

[14] K. Aloufi, “6LoWPAN stack model configuration for IoT streaming data transmission over coap,”

International Journal of Communication Networks and Information Security, vol. 11, no. 2, pp. 304–311,

2019.

[15] R. Fielding, J. Gettys, J. C. Mogul, H. Nielsen, L. Masinter, P. Leach, T. Berners-Lee, Hypertext

Transfer Protocol – HTTP/1.1. IETF, Internet Engineering Task Force, RFC 2616, 1999.

[16] Tzapu, Wifimanager, GitHub, 2018. <https://github.com/tzapu/WiFiManager>

[17] M. Yuan, Getting To Know MQTT, IBM Developer, 2019.

[18] J. O'Hara, "Toward a commodity enterprise middleware,” ACM Queue, vol. 5, no. 4, pp. 48-55,

2007.

[19] J. Schlesselman, G. Pardo-Castellote, B. Farabaugh, “OMG data-distribution service (DDS):

architectural update,” Proceedings of IEEE MILCOM 2004. Military Communications Conference,

Monterey, CA, USA, vol. 2, pp. 961 – 967, 2004.

[20] M. Bassoli, V. Bianchi, I. De Munari, “A plug and play IoT Wi-Fi smart home system for human

monitoring,” Electronics, vol. 7, no. 9, pp. 1-13, 2018.

[21] C. Pei, Z. Wang, Y. Zhao, Z. Wang, Y. Meng, D. Pei, Y. Peng, W. Tang, X. Qu, “Why it takes so

long to connect to a WiFi access point,” Proceedings of IEEE Conference on Computer

Communications, IEEE INFOCOM 2017, Atlanta, GA, pp. 1-9, 2017.

[22] S. Manandhar, MQTT based communication in IoT, Ph.D. thesis, Tampere University of

Technology, Finland, 2017.

[23] M. Osipov, “Home automation with zigbee,” Next Generation Teletraffic and Wired/Wireless

Advanced Networking, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 263–270, 2008.

[24] TrueBench, Toffee Project. <https://truebench.the-toffee-project.org/>

https://github.com/tzapu/WiFiManager
https://truebench.the-toffee-project.org/

